

Ash, Biochar, Charcoal Ingredients and Properties

Gerhard Soja

AIT Austrian Institute of Technology GmbH University for Natural Resources and Life Sciences, Vienna (BOKU) Austrian Biomass Carbonisation Society (ÖBIKA)

Structure

- Differences between ash, biochar and charcoal
- Production options
- Application potentials
- Quality requirements, product certification

In the beginning there was biomass

What is activated carbon etc.?

- Activated carbon = activated charcoal = activated biochar
- Activation = enhancement of specific sorption characteristics
 - Physical activation: steam application to common charcoal at 900 1000 °C
 - Chemical activation: strong acids or bases applied pre- or post-pyrolysis
- Main effect: creation of additional pores → higher specific surface area and higher sorption potential
- Main uses:
 - Medicinal uses
 - Environmental technology (cleaning of water, gas, atmosphere ...)
- Attention: sometimes the term "activation" is (inappropriately) used for biologically inoculated or nutrient-enriched biochars.

Wood ash

- (Nearly) no nitrogen, no carbon
- Most abundant element: Ca (<30 %)
- <10 % K, <2 % P, trace elements
- pH 10-11
- Maximum application rate for crops: 1 t/ha.yr
- Maximum application for grassland: 0.5 t/ha.yr
- Threshold values of pollutants

	Aqua regia- digestion (mg/kg)		
	class A*	class B*	
Zn	1000	1250	
Cu	140	180	
Cr	65	105	
Pb	55	110	
Ni	80	110	
Cd	3.5	5.5	
As	20	20	
Cr (VI)	2	2	
PAH (6 WHO)	6	6	

RICHTLINIE FÜR DEN SACH-GERECHTEN EINSATZ VON PFLANZE-NASCHEN ZUR VERWERTUNG AUF LAND- UND FORSTWIRTSCHAFTLICH GENUTZTEN FLÄCHEN

Fachbeirat für Bodenfruchtbarkeit und Bodenschutz

Austrian Guideline for plant-based ashes in agriculture and forestry, 2011, ed. 2017

* Exceedance of class A thresholds requires check for soil guide values according to ÖNORM L 1075. If exceeded, class B may not be used.

Pyrolysis, historically termed charcoal-burning, has been used since centuries

Pyrolysis: Thermochemical process of heating under O_2 -deficient oder O_2 -free conditions

Discovery of ancient agricultural charcoal applications: Terra Preta in the Amazonas region

Source: International Union of Soil Sciences

Wim Sombroek (1934-2003) discovered the "Terra Preta dos Indios" in the 1990ies .

Source: Kammann und Glaser, 2010

Slow and fast pyrolysis(gasification) plants (flash pyrolysis)

Pyreg-plant; www.pyreg.de

Biomass heating unit with biochar production www.biomacon.com

Syncraft-gasifier Ternitz (Floating fixed bed reactor) www.syncraft.at

Quelle: E.V. Kultikova, 1999

Pyrolysis

Anatomical changes during pyrolysis

Pore structure of the plant material persists AND additional micropores are formed

consequence: high specific surface area, high sorption potential

Photo: Martin Brandstetter

Starting with cellulose and lignin....

.... pyrolysis creates graphene-like structures, highly resistant against biological degradation

Sources: http://usmle.biochemistryformedics.com/role-of-dietary-fibre/ Kumar et al., 2005; Schimmelpfennig & Glaser, 2012

During pyrolysis: Loss of hydrogen, oxygen Accumulation of carbon ("carbonization")

Which input materials are useful for pyrolysis?

• Primarily **wastes and residues from agriculture and forestry**; in principle all organic materials with a d.m. of >50-60 % can be pyrolyzed

Biochar / charcoal

- Yield of pyrolysis: 25-35 % (m/m)
- Yield of gasification: 5-10 % (m/m)
- C-content of plant-based materials: 70-90 %
- Majority of N is lost, residual N has low bioavailability: necessity of N-enrichment of biochar if used in soils.
- P, K is enriched and may have a fertilizing effect.
- Sorption and availability of micronutrients depends on input material and cationic / anionic speciation in soil

Biochar for pyrolytic CARBON-SEQUESTRATION

Data source: N. Hagemann, 2019

CO₂-compensation with biochar

Average annual CO_2 -footprint (CO_{2e}) of one person in Germany:

x = 11,4 / (C-concentration * molar ratio * losses in process chain)
x = 11,4 / (0,79 * 3,67 * 0,92)
x = 4.3

Necessary biochar for compensation: (= about 13 t biomass d.m. input)

Biochar – the "jack of all trades device"?

Benefits of biochar applications – but they need the suitable framing conditions:

- Long-term carbon sequestration in soil
 - 1 kg biochar-carbon sequesters about 3.3 kg CO₂ (without indirect effects) + replaces ca. 1,5 kg CO₂ from fossil fuels when volatile substances are utilized
- Reduction of N₂O-emissions from soil
- Reduction of nitrate leaching from soil
- Improvement of physico-chemical soil properties (pH increase of acidic soils) and of soil water relations (enhancement of water storage capacity)
- Enhancement of soil microbiology
- Immobilisation of soil pollutants
- Improvement of farm animal health (as feed supplement); lower NH₃ losses when added to litter
- Improvement of plant growth (biochar as carrier for nutrients)
- Industrial applications (batteries, electrodes, reductants, ...)
- IPCC lists biochar as "negative emission technology" supportive to achieve 1.5 °Cobjective

The European Biochar-Certificate – international quality standard for biochar (both from pyrolysis or gasification)

EBC - Label		EBC-Feed	EBC-AgroBio	EBC-Agro	EBC-Material
EBC - Class		Class I	Class II	Class III	Class IV
Organic contaminents	16 EPA PAH	4±2 g t ⁻¹ DM	4±2 g t ⁻¹ DM	6.0+2.2 g t ⁻¹ DM	30g t ⁻¹ DM
	Benzo[a] pyren	25 mg t ⁻¹ (88% DM)			

Polycyclic aromatic hydrocarbons (PAH) are often the most critical quality parameter.

Quelle: https://www.european-biochar.org/media/doc/2/version_en_9_3.pdf

S 2211

Universität für Bodenkultur Wien

Ausgabe: 2016-11-01

n obsterreichischer Lerein

Trace element und PAH-thresholds for biochar according to Austrian national standard ÖNORM S 2211

Tabelle 1 — Schwermetall-Grenzwerte für Pflanzenkohle

Eignung	Pb	Cd	Cu	Ni	Hg	Zn	Cr
	mg ⋅ kg ⁻¹ TM						
Pflanzenkohle, geeignet für die Landwirtschaft	100 ^b	3,0b	150c	100 ^b	1,0 ^b	500c	100 ^b
Pflanzenkohle, geeignet für den Biolandbau ^a	45	0,7	70	25	0,4	200	70

^a Die Grenzwerte entsprechen der Kompostqualitätsklasse A+ gemäß Kompostverordnung sowie der EU-Verordnung 834/2007.

b Die Grenzwerte entsprechen der Düngemittelverordnung 2004.

c Die Grenzwerte entsprechen der Kompostqualitätsklasse A gemäß Kompostverordnung.

Tabelle 2 — PAK-Grenzwerte

Eignung	PAK			
	mg · kg⁻¹ TM			
Pflanzenkohle, geeignet für die Landwirtschaft	6,0 (PAK 16)			
Pflanzenkohle, geeignet für den Biolandbau	4,0 (PAK 16)			

Summary

- Biochar is a carbonisation product of pyrolysis or gasification, ash is a product of combustion
- Ash can be used as soil amendment and PK-fertilizer; compliance with pollutant thresholds provided
- **Biochar** is a carbonization product for agricultural applications and as environmental technology, **charcoal** is for thermal uses.
- Activated carbon is a purpose-designed modified biochar / charcoal.
- C-degradation of biochar in soil (if used for certificate trading): 0,3 % p.a.
- Apart from reduction of atmospheric CO₂, biochar has multiple environmental benefits for agricultural applications.
- Pollutant thresholds are published in **European Biochar Certificate (EBC)**, ÖNORM S 2211; any biochar use should rely on **EBC-certified biochar** only.

WISHING YOU A HAPPY CHARRING ...

gerhard.soja@ait.ac.at gerhard.soja@boku.ac.at

www.oebika.com