DiBiCoo, Web Seminar 17th of November 2020

German Biogas Association Association Allemande du Biogaz Asociación Alemana de Biogás www.biogas.org

Sustainability of biogas

Frank Hofmann, Consultant International Affairs Fachverband Biogas e.V., German Biogas Association

- Sustainability
- The role of biomass in climate change
- Life Cycle Assessment (LCA) for biogas
- Recommendations for biogas plant design and operation

What is sustainability?

• According to the Brundtland Comission of the United Nations, sustainability is:

"Development that meets the needs of the present without compromising the ability of future generations to meet their own needs."

(March 20th, 1987)

The three pillars of **Fachverband** BIOGAS sustainability Social Economic Aspects Source: Mark Fedkin. Adopted from the - business ethics University of Michigan Sustainability - fair trade Assessment [Rodriguez et al., 2002] - worker's benefits SOCIETY **ECONOMICS** -Growth -Standard of living -Education -Profit -Jobs -Cost saving Climate change is -Equal opportunity -R&D one of the main environmental SUSTAINABILITY challenges of our time Environmental Economic Social Environmental: ENVIRONMENT - energy efficiency - Conservation policies -Natural resource use - renewable fuels - Environmental justice -Pollution prevention - subsidies, incentives - Global stewardship -Bio-diversity - green technology

- Sustainability
- The role of biogas in climate change
- Life Cycle Assessment (LCA) for biogas
- Recommendations for biogas plant design and operation

Greenhouse gases

- There are four main naturally occurring greenhouse gases:
 - Water vapour,
 - Carbon dioxide,
 - Methane and
 - Nitrous oxide
- Gases have the ability to absorb heat, this ability is called *global warming potential* and is expressed as a factor of carbon dioxide (whose GWP is standardized to 1).

Greenhouse gas	Pre-industrial	2008	Human source	GWP
	concentrations	concentrations		100 years
Carbon dioxide (CO ₂)	278 ppm	365 ppm	Fossil fuel combustion, land use changes, cement production	1
Methane (CH_4)	700 ppb	1745 ppb	Fossil fuels; rice paddies; waste dumps; livestock	25
Nitrous oxide (N ₂ O)	270 ррb	314 ррb	Fertiliser; industrial processes; fossil fuel	298
			compustion	
Hydrofluorocarbons (e.g. HFC-23)	0	14 ppt	Liquid coolants	14,800**
Perfluorocarbons (e.g. CF ₄)	0	80 ppt	Refrigerant; electronics industry and aluminium industry	6,500
Sulphur hexafluoride (SF ₆)	0	4.2 ppt	Insulator in electronics and magnesium industry	22,800

* ppm, parts per million by volume; ppb, parts per billion by volume; ppt, parts per trillion by volume.

** This figure was changed in 2007 from 11,700 to 14,800.25

Biogas and climate change

Avoids uncontrolled methane emissions from open air storage of organic material

Methane is a very effective GHG

Generation of renewable energy. Substitution of fossil fuels

GHG performance is highly depending of feedstock

Production of biofertilizer – substitution of mineral fertilizers

- Sustainability
- Climate change
- The role of biomass in climate change
- Life Cycle Assessment (LCA) for biogas
- Recommendations for biogas plant design and operation

Life-cycle Assessment (LCA)

Fertilizer

Fuel

CO2

LCA is a technique to assess environmental impacts associated with all the stages of a product's life from

- raw material extraction through
- materials processing,
- manufacture,
- distribution,
- use,
- repair
- maintenance, and
- disposal or recycling.

Source:

https://sftool.gov/plan/400/life-cycle-assessment-lca-overview

LCA for biogas plants

• GHG emission of biogas production

Figures are for closed digestate storage tanks!

Source: FvB 2017 with figures from RED II

LCA for biogas plants

• GHG emission savings of biogas utilization for power generation with heat credit

Figures are for closed digestate storage tanks!

Source: FvB 2017 with figures from RED II

- Sustainability
- Climate change
- The role of biomass in climate change
- Life Cycle Assessment (LCA) for biogas
- Recommendations for biogas plant design and operation

Recommendation for a low-emission biogas plant operation

- Use of stored organic material, like manure
- Methane leakage should be avoided whenever possible.
 - Cover the digestate storage. Most methane emissions in a biogas plant arise there.
 - Install an automatic starting flare in the time the CHP is not operating. A CHP operates typically below 8,200 h/a. During CHP standstill times the produced methane must be flared.
 - Regular leakage control of the biogas plant.
- If CHP is installed, the produced heat should be used to substitute fossil fuel heat.
- Digestate should substitute synthetic fertilizer

GBA Publications

Contact: Frank Hofmann@biogas.org

Bioenergy in the climate change discussion

- Bioenergy is a nearly carbon neutral energy generation because
 - during the growth of plants carbon dioxide from the atmosphere is stored in the plant in form of carbon containing molecules (CO₂ reduction).
 - after combustion about the same amount of carbon dioxide is emitted which was originally extracted from the atmosphere (CO₂ neutral process).

Source: https://www.windows2universe.org/earth/climate/images/carboncycle_jpg_image.html